2D motion - River questions

Section 2.2 in your text
I can swim at $1.2 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ and the river's current is $0.2 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$. What is my resultant velocity?

Remember to add TAIL-TO-TIP and draw the resultant vector (start at start and end at the end)
PYTHAGOREAN - To solve for resultant velocity I use Pythagorean theorem.
So... $(0.2)^{2}+(1.2)^{2}=(\text { resultant velocity })^{2}$
In this case, the resultant velocity $\mathrm{V}_{\mathrm{R}}=1.24 \mathrm{~m} / \mathrm{s}$
SOH CAH TOA - use trigonometry to solve for the angle Θ

$$
\operatorname{Tan} \Theta=0.2 / 1.2 \quad \Theta=10^{\circ}
$$

So...resultant velocity as seen by someone on the bank is $1.24 \mathrm{~m} / \mathrm{s}\left[\mathrm{N} 10^{\circ} \mathrm{E}\right]$

How long to cross the river with NO current?

$$
V=d / t \quad \text { so... } \quad t=d / v \quad=120 \mathrm{~m} / 1.2 \mathrm{~m} / \mathrm{s} \quad \text { time }=100 \mathrm{~s} \text { ! }
$$

How long to cross the river WITH current?
** Current only causes me to drift east. It does NOT slow down my northerly progress. There is NO component of my swimming north that is in the easterly direction!

$$
\text { So..time }=100 \mathrm{~s}
$$

How far do I drift east by the time I cross the river?

Well, I know it take 100s to cross. I know I am drifting $0.2 \mathrm{~m} / \mathrm{s}$. So..

$$
\mathrm{V}=\mathrm{d} / \mathrm{t} \quad \mathrm{~d}=\mathrm{vt}=0.2 \mathrm{~m} / \mathrm{s}[\mathrm{E}] \times \quad 100 \mathrm{~s}=20 \mathrm{~m}[\mathrm{E}] \quad \text { I have drifted } 20 \mathrm{~m}[\mathrm{E}] .
$$

[^0]
[^0]: Because I am swimming [north] and drifting [east], one speed does not affect the other. There is NO component of [north] that is acting [east] because these 2 directions are 90° to each other! They act separately.

