5 Important Properties of Waves & Light

1.	Rectilinear Propogation – refers to the fact that light travels in a straight line if unhindered.
2.	Reflection – light will 'bounce' off a smooth shiny surface. angle of incidence = angle of reflection!
3.	Diffraction – waves will 'bend' as they travel through openings or around obstacles.
	If the opening is much larger than wavelength, then there is little diffraction.
	If the opening is much smaller than wavelength, then there is much diffraction.
	(Picture – page #534 Fig.11.3a)
4.	Refraction – is the bending of waves as they enter a new medium
	Waves will bend towards the normal as they slow down (or enter a more dense medium)
	Waves will bend away from the normal as they speed up (or enter a less dense medium).
	** n = refractive index = optical density. Greater 'n', the greater the density, the more
	light slows down. for example: go from high 'n', to low 'n', the light is speeding up $-\rightarrow$ will bend away.
5.	Dispersion – is the breaking up of visible white light into its components (ROYGBIV) Red, orange, yellow, green, blue, indigo, violet
Lo	R O Y G B I V ngest λ west frequency ast energy R O Y G B I V Shortest λ highest frequency most energy
	 This happens with white light because difference colours have different refractive abilities. Red refracts the least and blue refracts the most.