Acceleration

Unit for acceleration is $\mathrm{m} / \mathrm{s}^{2}=\mathrm{m} / \mathrm{s} / \mathrm{s}$ ie: $8 \mathrm{~m} / \mathrm{s}^{2}$.
This REALLY means that every second, I increase my speed by $8 \mathrm{~m} / \mathrm{s}$.
ie: $0 \mathrm{~m} / \mathrm{s} \rightarrow \quad 8 \mathrm{~m} / \mathrm{s} \rightarrow \quad 16 \mathrm{~m} / \mathrm{s} \rightarrow \quad 24 \mathrm{~m} / \mathrm{s}$......
$0 \mathrm{~s} 1 \mathrm{~s} 2 \mathrm{~s} \quad 3 \mathrm{~s} \ldots \ldots$

If I try to pass someone in my car, my acceleration might be $5 \mathrm{~km} / \mathrm{h} / \mathrm{s}$.
This REALLY means that every second, I increase my speed by $5 \mathrm{~km} / \mathrm{h}$.
ie:

Acceleration = rate of change of velocity over time (...or in everyday language...how quickly is my speed changing?).

Graphical Analysis. See next page.
** We started by looking at just the velocity-time graph. Try doing this and ignoring the other two. Make sure you understand what the v/t graph is telling you. Then....decide how that looks on the acceleration graph.
ie: When a velocity is constant (not changing), then the acceleration is zero! (Part A \& B)
Also: in Part C, the velocity is changing, so there is acceleration. Acceleration is the 'rate of change' over time. This is the slope! (Δy or displacement / Δx or time). The slope is +ve in Part C, so there is positive acceleration.

These graphs are stacked so that the ' x ' axis or time lines up.
d

v
 time

Part A - constant velocity in +ve direction Part B - constant zero velocity - stopped Part C - Fast negative velocity slowing down to a stop. (acceleration)

time

