Kinematics Formulas - your formula sheet should contain the 8 formulas in bold.
We know that, $\Delta d=$ displacement, $v=$ velocity, $a=$ acceleration and $t=$ time.
Now add subscripts: $\quad v_{1}=$ first velocity recorded $\quad v_{2}=$ second velocity recorded
3 Most Basic Formulas - by definition:
$\mathbf{v}=\underset{\text { (change in displacement over time) }}{d_{2}-d_{1} / t}(v=\Delta d / t) \quad$ at constant velocity: $\Delta d=v t$

$$
a=v_{2}-v_{1} / t \quad(a=\Delta v / t)
$$

(change in velocity over time)

5 Derived Formulas

If you rearrange the acceleration formula and isolate for v_{2}, you get:
$v_{2}=v_{1}+a t$
Manipulating other formulas and substituting, you also get:
$\Delta d=\left(v_{1}+v_{2} / 2\right) t$
$\Delta d=v_{1} t+\frac{1}{2} a t^{2}$
$\Delta d=v_{2} t-\frac{1}{2} a t^{2}$
$v_{2}{ }^{2}=v_{1}{ }^{2}+2 a \Delta d$
Why so many formulas? It depends what information you're given and what you're required to find. So the GRASS method is important! The derived formulas each contain 4 variables. If you know 3 of them, you can solve for the $4^{\text {th }}$. It's a bit like a puzzle! Look at the options you have: ($x=$ means this variable is in the formula)

Equation (formula)	$\Delta \mathrm{d}$	a	v_{1}	V_{2}	t
$\mathrm{v}_{2}=\mathrm{v}_{1}+\mathrm{at}$	--	X	X	X	X
$\Delta d=\left(v_{1}+v_{2} / 2\right) t$	X	--	X	X	X
$\Delta d=v_{1} \dagger+\frac{1}{2} a t^{2}$	X	X	--	X	X
$\Delta d=v_{2} t-\frac{1}{2} a t^{2}$	X	X	X	--	x
$v_{2}{ }^{2}=v_{1}{ }^{2}+2 a \Delta d$	X	X	X	X	--

Try solving these problems. For convenience (this one time) the formula you need is given.

Use: $\quad v_{2}{ }^{2}=v_{1}{ }^{2}+2 a \Delta d$
To solve: A hybrid car with an initial velocity of $10.0 \mathrm{~m} / \mathrm{s}$ [E] accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ [E]. how long will it take the car to acquire a final velocity of $25.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$? answer: 5.0 s

Use: $\quad \Delta d=\left(v_{1}+v_{2} / 2\right) t$
To solve: A coal train travelling west at $16.0 \mathrm{~m} / \mathrm{s}$ is brought to rest in 8.0 s . Find the displacement of the coal train while it is coming to a stop. Assume uniform (ie: constant) acceleration. Answer: 64 m [W]

Use: $\quad \Delta d=v_{1} t+\frac{1}{2} a t^{2}$
To solve: A golf ball that is initially travelling at $25 \mathrm{~m} / \mathrm{s}$ hits a sand trap and slows down with an acceleration of $-20 \mathrm{~m} / \mathrm{s}^{2}$. Find its displacement after 1.0 s . answer: 15 m [fwd]

Use: $\quad \Delta d=v_{2} t-\frac{1}{2} a t^{2}$
To solve: A speedboat slows down at a rate of $5.0 \mathrm{~m} / \mathrm{s} 2$ and comes to a stop. If the process took 15s, find the displacement of the boat. Answer: $5.6 \times 10^{2} \mathrm{~m}$ [fwd]. or 560 m [fwd].

Use: $\quad v_{2}{ }^{2}=v_{1}{ }^{2}+2 a \Delta d$
To solve: A bullet accelerates the length of the barrel of a rifle (0.750 n) with a magnitude of $5.35 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$. With what speed does the bullet exit the barrel? (hint: what is v_{1} ? It is not stated, but you should know!). answer: $896 \mathrm{~m} / \mathrm{s}$

