Position, Motion \& Displacement

Position = your spot as defined by a coordinate system \& reference. le: GPS gives you a position relative to 0,0 of the globe. Symbol is \vec{d}

The half arrow $>$ defines this as a vector. A vector has magnitude (\#) and direction.
...whereas... scalar (no \rightarrow). Scalar has magnitude but no direction. My mass is 85 kg .

Distance $=$ length of path travelled. Symbol $=\Delta d$ $\Delta=$ 'delta' in Greek and means change.

Motion (movement) $=$ change in position.
$\underline{\text { Displacement }}=$ straight line distance between initial and final position and it has direction. Symbol is $\overrightarrow{\Delta d}$ example: $\overrightarrow{\Delta \mathrm{d}}=12 \mathrm{~m}[\mathrm{E}] \quad$ (from reference pt)

Position-Time graphs $=\mathrm{d} / \mathrm{t}$ graph. these are very helpful in analyzing motion.
d time

Try these together:

1) I am fidgety as a bus stop. I pace 5.0 m [W] and then 10.0 m [E$]$. What is my final position? What is my distance travelled? What is my displacement?
2) I walk 2 blocks east and then turn and walk 6 blocks north. What is my distance and displacement?
3) Sprinting drills include running $40 \mathrm{~m}[\mathrm{~N}]$, walking 10 m [N] and then sprint $100 \mathrm{~m}[\mathrm{~N}]$. What is the sprinter's displacement from the start point? Draw it out as well.
4) To perform a give and go, a basketball player fakes out the defence by moving 0.75 m [right] and then 3.5 m [left]. What is the player's displacement? Distance travelled? Draw it out as well.
5) While building a wall, a bricklayer sweeps the cement back and forth. If she swings her hand back and forth, (a distance of 1.7 m each way) four times, calculate the distance and displacement her hand travels during that time.
6) Do these following questions of a 'graph' grid made in your notebook. No need to use official graph paper unless you wish to. Make [north] as position direction.
a) Draw a position/time graph ($\stackrel{\mathrm{d}}{\mathrm{d}}$ t graph) for a car sitting $30 \mathrm{~m}[\mathrm{~N}]$ of reference for 5 seconds.
b) Draw a \vec{d} / t graph for a car starting a reference and travelling in the northern direction at a constant speed. ie: every second, the car moves 4 m [south].
c) on the graph you drew in (b), draw another car travelling in the southern direction at a constant speed of 4 m every second. (same speed, different direction)
