Unit 2: Energy \& Momentum

Dynamics = understanding of forces to help us predict motion.

This unit \rightarrow We'll look at how energy transfers (space / springs) and analyze situations using conservation of energy.
\rightarrow introduce momentum ("quantity of motion)
\rightarrow collision - we can predict outcome of simple collisions. (car crashes, billiard balls)

Space questions

- $\mathrm{Fg}=\mathrm{GMm} / \mathrm{r}^{2} \quad$ Newton's Universal law of Gravitation - Must use this version. Fg = mg doesn't work
- $\quad M$ and m are mass (kg)
- $G=$ gravitational constant
- $\quad r=$ radius $=$ distance between centres of 2 objects (m and M)

Givens $\quad * *$ Make sure these are on your formula sheet!

- $\mathrm{G}=6.67 \times 10^{-11}$
- $m_{e}=5.98 \times 10^{24} \mathrm{~kg}$
- $r_{e}=6.38 \times 10^{6} \mathrm{~m}$
- $\mathrm{m}_{\text {sun }}=1.98 \times 10^{30} \mathrm{~kg}$
- $\mathrm{m}_{\text {moon }}=7.35 \times 10^{22} \mathrm{~kg}$
- Distance from sun-earth ${ }_{\mathrm{s}} \mathrm{r}_{\mathrm{e}}=1.5 \times 10^{11} \mathrm{~m}$
- Distance from earth-moon ${ }_{m} r_{e}=3.94 \times 10^{8} \mathrm{~m}$
- $\quad r_{m}=1.74 \times 10^{6} \mathrm{~m}$
-

Geosynchronous orbit = orbit in which the satellite stays above the same geographical place.

- Occurs at altitude (distance from earth's surface) of $3.58 \times 10^{4} \mathrm{~km}$

