Energy Efficiency

1000 J fuel energy (put IN to car)

So how efficient is the car?

How about this? A coal burning plant is 38% efficient. It puts out 2.2×10^{14} J of energy a day. How much fossil fuel (coal) must be burned a day to achieve this output?

38% (input E) = output E

0.38 (fossil energy burned) J = 2.2×10^{14} J

Fossil energy burned = $2.2 \times 10^{14} / 0.38$

Fossil energy burned = _____

(you finish off – it should be greater than 2.2×10^{14})

% efficiency formulas

Remember the work-energy theorem so we can consider the work instead of energy

Machines & Efficiency

Key points

- → Simple machines (lever, ramp, pulley etc.) is a device that enables us to do work more easily.
 ie: I can move a heavy rock with a long <u>lever</u>.
- \rightarrow Not so simple machines help too!
 - ie: a **<u>bulldozer</u>** moves a load of bricks faster than I can.

We have other machines that are not so simple: ie: furnace, heater, engine etc. There is a trade-off though. Energy is 'lost' to non-useful forms (often heat) during the process. Take a look at Table 5.1 on page. 181.