Electric Potential - practice problems

Ee = electric potential energy
$\mathrm{V}=$ electric potential - Joules / Coulomb (Volt) - energy it has compared to infinity
$\underline{\mathrm{V}}=$ electric potential difference \quad - Joules /Coulomb (Volt)

1. Calculate the electric potential a distance of 0.40 m from a spherical point charge of $+6.4 \times 10-6 \mathrm{C}$.

$$
\begin{array}{ll}
\mathrm{V}=? \mathrm{r}=0.40 \mathrm{~m} & \mathrm{qm}=+6.4 \times 10^{-6} \mathrm{C} \\
\mathrm{~V}=\mathrm{kqm} / \mathrm{r} & \mathrm{~V}=1.4 \times 10^{5} \mathrm{~J} / \mathrm{C} \quad \text { or } 1.4 \times 10^{5} \mathrm{~V}
\end{array}
$$

2. How much work must be done to increase the potential of a charge of $3.0 \times 10^{-7} \mathrm{C}$ by 120 V ?

$$
\begin{aligned}
& \mathrm{W}=? ?=\Delta \mathrm{Ee} \quad \mathrm{q}=3.0 \times 10^{-7} \mathrm{C} \quad \Delta \mathrm{~V}=120 \mathrm{~V} \\
& \mathrm{~W}=\Delta \mathrm{Ee}=\mathrm{q} \Delta \mathrm{~V} \quad=3.6 \times 10^{-5} \mathrm{~J}
\end{aligned}
$$

3. In a uniform electric field, the potential difference between 2 points 10 cm apart is 80 V .

Calculate the magnitude of the electric field intensity.

$$
\mathrm{r}=0.10 \mathrm{~m} \quad \Delta \mathrm{~V}=80 \mathrm{~V} \quad \varepsilon=?
$$

$$
\varepsilon=\Delta \mathrm{V} / \mathrm{d} \quad \underline{\text { field intensity }} \text { is } 8.0 \times 10^{2} \mathrm{~N} / \mathrm{C}
$$

4. The electric field intensity in the region between 2 parallel plates is $400 \mathrm{~N} / \mathrm{C}$. If the plates are connected to a battery with a potential difference of 90 V , what is the separate of the plates?

$$
E=400 \mathrm{~N} / \mathrm{c} \text { parallel plates } \quad \Delta \mathrm{V}=90 \mathrm{~V} \quad \mathrm{~d}=? \quad \varepsilon=\Delta \mathrm{V} / \mathrm{d} \quad \underline{d}=0.23 \mathrm{~m}
$$

Try these:

1. The potential at a distance of 25 cm from a point charge is $-6.4 \times 10^{4} \mathrm{~V}$. What is the sign and magnitude of the point charge? $\left[-1.8 \times 10^{-6} \mathrm{C}\right] \quad \mathrm{V}=\mathrm{kqm} / \mathrm{r}$
2. It takes $4.2 \times 10^{-3} \mathrm{~J}$ of work to move $1.2 \times 10^{-6} \mathrm{C}$ of charge from point X to point Y in an electric field.

3. Calculate the magnitude of the electric field in a parallel plate apparatus whose plates are 5.00 mm apart and have a potential difference of 300 V between them. $[\mathbf{6 . 0 \times 1 0 4} \mathbf{N} / \mathrm{C}] \boldsymbol{\varepsilon}=\boldsymbol{\Delta V} / \mathbf{d}$
4. What potential difference would have to be maintained across the plates of a parallel plate apparatus, if they are 1.2 cm apart, to create an electric field of intensity $1.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$? $\left[1.8 \times 10^{2} \mathrm{~V}\right] \quad \varepsilon=\Delta \mathrm{V} / \mathrm{d}$
