Electric Potential – practice problems

Ee = electric potential <u>energy</u>	- Joules
V = electric potential	- Joules / Coulomb (Volt) - energy it has compared to infinity
ΔV = electric potential difference	- Joules /Coulomb (Volt)

1. Calculate the electric potential a distance of 0.40 m from a spherical point charge of $+6.4 \times 10-6 \text{ C}$.

V = ? r = 0.40 m gm = +6.4 x 10⁻⁶ C

V = kqm/r $V = 1.4 \times 10^5 J/C$ or $1.4 \times 10^5 V$

2. How much work must be done to increase the potential of a charge of 3.0×10^{-7} C by 120 V? W = ?? = Δ Ee q = 3.0×10^{-7} C Δ V = 120 V

 $W = \Delta Ee = q\Delta V = 3.6 \times 10^{-5} J$

3. In a uniform electric field, the potential difference between 2 points 10 cm apart is 80 V. Calculate the magnitude of the electric field intensity.

r = 0.10 m $\Delta V = 80 \text{ V}$ $\epsilon = ?$

 $\varepsilon = \Delta V/d$ field intensity is 8.0 x 10² N/C

4. The electric field intensity in the region between 2 parallel plates is 400 N/C. If the plates are connected to a battery with a potential difference of 90 V, what is the separate of the plates?

E = 400 N/c parallel plates $\Delta V = 90 \text{ V}$ d = ? $\mathcal{E} = \Delta V/d$ d = 0.23 m

Try these:

- 1. The potential at a distance of 25 cm from a point charge is -6.4×10^4 V. What is the sign and
magnitude of the point charge? [-1.8 x 10⁻⁶ C]V = kqm/r
- 2. It takes 4.2 x 10^{-3} J of work to move 1.2 x 10^{-6} C of charge from point X to point Y in an electric field. What is the potential difference between X and Y? [3.5 x 10^{3} V] $\Delta Ee = q\Delta V$
- 3. Calculate the magnitude of the electric field in a parallel plate apparatus whose plates are 5.00 mm apart and have a potential difference of 300 V between them. **[6.0 x 104 N/C]** $\epsilon = \Delta V/d$
- 4. What potential difference would have to be maintained across the plates of a parallel plate apparatus, if they are 1.2 cm apart, to create an electric field of intensity 1.5×10^4 N/C? [1.8 × 10² V] $\epsilon = \Delta V/d$