6.1 - Ep - Gravitational Potential Energy in Space - Practise

Mas of earth $-\mathrm{Me}=5.98 \times 10^{24} \mathrm{~kg} \quad$ radius of earth $-r_{e}=6.38 \times 10^{6} \mathrm{~m}$

1. a) What is the gravitational potential energy of a 60 kg astronaut standing on earth? Hint: remember ' r ' is distance from astronaut to centre of earth! It is not equal to zero here! [-3.75 $\times 10^{9} \mathrm{~J}$]
b) What is his change in gravitational potential energy when he is placed in orbit 400 km above earth? Hint: 'change' means you need to calculate $\Delta \mathrm{Ep}$. [$\Delta \mathrm{Ep}=\mathbf{2 . 2 \times 1 0 ^ { 8 }} \mathrm{J}$]
c) How much work does it take to accomplish this feat? (assume no frictional forces).

$$
\left[\mathrm{W}=2.2 \times 10^{8} \mathrm{~J}\right] \quad \text { Need help? Read Example } 2
$$

2. With what initial velocity must an object be projected vertically upward from the surface of the Earth in order to rise to a height equal to the Earth's radius? (neglect any air resistance)
Hint: Use the conservation of energy AND if you don't know mass, leave it as ' m [$\mathrm{v}=7.9 \times 10^{3} \mathrm{~m} / \mathrm{s}$] Need help? Read Example 4
3. A 1.0 kg mass is lifted 100 km above the Earth's surface. Determine it's $\Delta \mathrm{Ep}$ and calculate the $\%$ error you get by using the the earthbound formula $E p=m g h$ instead of the more specific formula, $\mathrm{Ep}=-\mathrm{GMm} / \mathrm{r}$. (\% relative to correct $\Delta \mathrm{Ep}$ space formula! $=\mathbf{1 . 2}$ \%)

Need help? Read Example 3

4. What potential energy does the moon have? We know that the distances between the centre of Earth and the centre of the moon is approximately $3.94 \times 10^{5} \mathrm{~km}$. [$-7.4 \times 10^{28} \mathrm{~J}$]

Need help? Read example 2

