6.1 – Ep – Gravitational Potential Energy in Space – Practise

Mas of earth - Me = 5.98×10^{24} kg radius of earth - r_e = 6.38×10^{6} m

- a) What is the gravitational potential energy of a 60 kg astronaut standing on earth? Hint: remember 'r' is distance from astronaut to centre of earth! It is not equal to zero here!
 [-3.75 x 10⁹ J]
 - b) What is his change in gravitational potential energy when he is placed in orbit 400 km above earth? *Hint*: 'change' means you need to calculate Δ Ep. [Δ Ep = 2.2 x 10⁸ J]
 - c) How much work does it take to accomplish this feat? (assume no frictional forces).

 $[W = 2.2 \times 10^8 J]$ Need help? Read Example 2

- With what initial velocity must an object be projected vertically upward from the surface of the Earth in order to rise to a height equal to the Earth's radius? (neglect any air resistance) *Hint*: Use the conservation of energy AND if you don't know mass, leave it as 'm
 [v = 7.9 x 10³ m/s] Need help? Read Example 4
- 4. What potential energy does the moon have? We know that the distances between the centre of Earth and the centre of the moon is approximately 3.94 x 10⁵ km. [-7.4 x 10²⁸ J] Need help? Read example 2