FBD, Fnet and Fg Practise Problems - Classwork (not in text) *Remember \rightarrow Bird's eye views and horizontal views*

1. Draw a FBD \& calculate Fnet for each of the following:
a) A pencil being lifted up with 2 N and experiencing air resistance of $0.5 \mathrm{~N} \quad\{$ Fnet $=1.5 \mathrm{~N}$ [up] \}

An unbalanced force means its speeding up
b) A 75 kg parachutist is falling due to gravity, while the chute provides air resistance of 735 N [up]. (hint: find Fg !)
$\{$ Fnet $=0 \mathrm{~N}\} *$ it would fall at constant v !
A balanced force means no change in motion
c) A car being pushed with 560 N [fwd] while experiencing road/air friction of 550 N [backwards]. The weight of the car is $10,000 \mathrm{~N} .\{$ Fnet $=10 \mathbf{N}$ [fwd] \}

An unbalanced force means its speeding up.
2. A hockey player is checked by 2 defensemen. He experiences a force of $600 \mathrm{~N}[\mathrm{~W}]$ and $675 \mathrm{~N}[\mathrm{~N}]$. Draw the FBD and calculate Fnet. $\quad\left\{\right.$ Fnet $\left.=903 \mathbf{N}\left[\mathbf{W} 48^{\circ} \mathrm{N}\right]\right\}$
3. A particularly large rock has rolled down the hill (during the winter) and is in the middle of a cottage road. Three strong young people try to push it out of the way. One pushes $220 \mathrm{~N}[\mathrm{E}]$, another pushes $300 \mathrm{~N}[\mathrm{~S}]$ and the third pushes 270 N [S 20 E$]$.

Draw a FBD and calculate Fnet. $\left\{\right.$ Fnet $=636$ N $\left[E 61^{\circ}\right.$ S $\left.]\right\}$
4. What is the magnitude of the gravitational force between a 55 kg student and a 65 kg student whose centres are 1.0 m apart?
$\left\{\mathbf{F g}=2.4 \times 10^{-7} \mathrm{~N}\right.$ [towards each other] \}
5. A) What is the weight of a 19 kg curling stone on earth?

$$
\{\text { Weight }=\mathbf{F g}=190 \mathrm{~N} \text { [down] }- \text { rounded to } 2 \text { digits }\}
$$

B) What is the weight of a 54 kg robot on the surface of Venus where the gravitational intensity (g) is $8.9 \mathrm{~N} / \mathrm{kg}$ [down]
$\{$ Weight $=\mathbf{F g}=480 \mathrm{~N}$ [down] - rounded to 2 digits \}
6. The force of gravity between a concrete ball and a steel ball is $1.7 \times 10^{-4} \mathrm{~N}$. What would it be if
a) the mass of the concrete ball was tripled?

$$
\left\{3 \mathrm{Fg}=3 \times 1.7 \times 10^{-4} \mathrm{~N}=5.1 \times 10^{-4} \mathrm{~N}\right\}
$$

b) the mass of the concrete ball was tripled and steel ball quadrupled?

$$
\left\{12 \mathrm{Fg}=12 \times 1.7 \times 10^{-4} \mathrm{~N}=2.04 \times 10^{-3} \mathrm{~N}\right\}
$$

c) the masses stayed the same but the distance was tripled

$$
\left\{1 / 9 \mathrm{Fg}=1 / 9 \times 1.7 \times 10^{-4} \mathrm{~N}=1.9 \times 10^{-5} \mathrm{~N}\right\}
$$

