Forces in 2D-2.4

You now know how to break vectors into ' x ' and ' y ' components. You also know how to analyze vectors with regards to these components separately ie: projectiles - analyze horizontal motion independently of vertical motion. Hurrah! You are ready to look at forces - just more of the same.

An adult is pulling a child on a sled with a force 'Fapp' at an angle 30° above the horizontal. The child and sled have a mass of 35 kg . What is the forward acceleration?

$$
\begin{aligned}
\text { So. } . \text { Fappx } & =(\cos 30) \times \text { Fapp } \\
\text { Fappy } & =(\sin 30) \times \text { Fapp }
\end{aligned}
$$

You will need to break the applied force into it's ' x ' and ' y ' components. See above formulas.

in Fapp.

Notice that I also added in
Fn. Tricky part: The sled is not moving up or down so the vertical forces must be equal. So... Fn + Fappy = Fg. Notice Fn does not equal Fg!!

If I add friction to this system, you need to calculate it with the following familiar formula:

$$
F f=\mu F n \quad \text {...you need to calculate } F n \text { using: } F n+\text { Fappy }=F g
$$

So...
\#1 $\mathrm{Fg}=\mathrm{mg}$
\#2 Fappy $=\cos 30 \cdot$ Fapp
\#3 Fn = Fg - Fappy
\#4 $\mathrm{Ff}=\mu \mathrm{Fn}$ That gives you Friction !!!

If I know friction and Fappx and the mass of the object, I can calculate the acceleration!

