Free Fall Kinematics – Know the tricky bits!

'Free Fall' refers to an object falling without any additional forces ie: motors, rocket boosters. So a coin I drop or a pebble I throw off a bridge are both in 'free fall'. A skydiver is also in free fall with or without the parachute deployed.

We still have v_1 , v_2 , Δd , a and t for free fall. So you can still your 5 acceleration formulas! The trick is that sometimes information is not given to you, but you should know! For example, you should know: **(these are the tricky bits!)**

- 1. acceleration due to gravity (ignore air friction) = 9.8 m/s2 [down] for the **whole** trip!
- 2. the velocity at the apex (top of) an upwards flight is momentarily 0 m/s as it turns around.
 - 3. And if you are launching something from a cliff and it lands below the cliff, usually you say the Δd is negative (since up is usually +ve)

Q1 : If the initial launch velocity was 15 m/s [up], how high did the object travel above the cliff?

G:	v ₁ =		a =	v ₂ =	*think!*
R:	Δd	above cliff			
A:	form	ula to use is			
S: 8	& P:				

```
Q2: How fast was the object travelling when it hit the ground below the cliff?

G: v_1 = \dots a = \dots \Delta d \dots * think about \Delta d!*

R: v_2 when it hits the ground

A: formula to use is......

S: & P:
```