Free Fall Kinematics - Know the tricky bits!

'Free Fall' refers to an object falling without any additional forces ie: motors, rocket boosters. So a coin I drop or a pebble I throw off a bridge are both in 'free fall'. A skydiver is also in free fall with or without the parachute deployed.

We still have $\mathrm{v}_{1}, \mathrm{v}_{2}, \Delta \mathrm{~d}$, a and t for free fall. So you can still your 5 acceleration formulas! The trick is that sometimes information is not given to you, but you should know! For example, you should know: (these are the tricky bits!)

1. acceleration due to gravity (ignore air friction) $=9.8 \mathrm{~m} / \mathrm{s} 2$ [down] for the whole trip!
2. the velocity at the apex (top of) an upwards flight is momentarily $0 \mathrm{~m} / \mathrm{s}$ as it turns around.
3. And if you are launching something from a cliff and it lands below the cliff, usually you say the $\Delta \mathrm{d}$ is negative (since up is usually +ve)

Q1: If the initial launch velocity was $15 \mathrm{~m} / \mathrm{s}$ [up], how high did the object travel above the cliff?
$\mathrm{G}: \quad \mathrm{v}_{1}=$ \qquad $\mathrm{a}=$ \qquad $\mathrm{v}_{2}=$ \qquad *think!*
R: Δd above cliff
A: formula to use is \qquad S: \& P:

Q2: How fast was the object travelling when it hit the ground below the cliff?
G: $\mathrm{v}_{1}=$ \qquad a = \qquad $\Delta \mathrm{d}$. \qquad *think about $\Delta \mathrm{d}!*$
R : v_{2} when it hits the ground
A: formula to use is \qquad
S: \& P:

