Impulse (J)

The symbol for impulse is ' J '
Impulse causes a change in momentum
Mathematically: $J=\Delta p$
$J=p_{2}-p_{1} \quad$ usually we are looking at one object and it changes speed.
J (impulse) is also a vector. So when solving problems, you need to establish the +/- directions $t=$

Another Derivation

Fnet $=\mathrm{ma} \quad$ This is the net force on one object causing it to accelerate Let's consider Fnet to be just ' F '.

We know $\quad a=\Delta v / t \quad$ Sub. this in.
$F=m \Delta v / t$
$\mathrm{Ft}=\mathrm{m} \Delta \mathrm{v}$

Usually we are looking at one object that changes its velocity so mass (m) stays constant but the velocity changes $(\Delta \mathrm{v})$. For example, a car would experience a force in a car crash causing it to come to rest (hopefully safely).
$\Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1}$
$\Delta \mathrm{p}=m \mathrm{v}_{2}-\mathrm{mv} 1$ The mass is constant (same object) and so can be factored out

$$
\Delta \mathrm{p}=\mathrm{m}(\mathrm{v} 2-\mathrm{v} 1)
$$

$\Delta p=m \Delta v$
So $m \Delta v$ is the Δp (change in momentum)
Impulse = change in moment **Note: Impulse is a vector!

Sample Problem

A skateboarder and his board have a mass of 75 kg and are travelling at $5 \mathrm{~m} / \mathrm{s}$ [fwd]. He comes to rest by one of two ways: hitting a telephone pole (stops in 0.5 s) and coasting to a stop along some asphalt road (stops in 5 s).
a. Which situation creates the greater impulse?
b. Which situation creates the greater force? *remember large forces injure!
a)

$$
\begin{aligned}
& \quad \mathrm{J}=\mathrm{Ft} \quad \text { This doesn't help because I don't know force. } \\
& \mathrm{J}=\Delta \mathrm{p} \\
& \mathrm{~J}=\mathrm{m} \Delta \mathrm{v} \\
& \\
& \quad \begin{array}{l}
\text { Stopping in } 0.5 \mathrm{~s} \quad \mathrm{~J}=75(0-5) \quad \mathrm{J}=-375 \mathrm{~N} \text { [forward] } \\
\text { or impulse is } 375 \mathrm{~N} \text { [back] }
\end{array}
\end{aligned}
$$

Stopping in $5 \mathrm{~s} \quad \mathrm{~J}=75(0-5) \quad \mathrm{J}=-375 \mathrm{~N}$ [forward] or impulse is 375 N [back]

So the impulse is the same for both methods of stopping.
b) $\mathrm{F}=$?
$J=F t$
Stopping in $0.5 \mathrm{~s} \quad 375 \mathrm{~N}[$ back $]=\mathrm{F}(0.5)$

$$
\mathrm{F}=750 \mathrm{~N} \text { [back] }
$$

Stopping in $5 \mathrm{~s} 375 \mathrm{~N}[$ back $]=\mathrm{F}(5)$ F $=75 \mathrm{~N}$ [back]

So...stopping by telephone pole in 0.5 s would require 750 N whereas stopping in 5 s by the friction of an asphalt road would require 75 N . Obviously more damage will be done by hitting the telephone pole!

