Millikan's Experiment – Mathematical Analysis

Looking at Potential Difference (ΔV)

(Look at $\varepsilon = \Delta V/\Delta d$ -- Constant field strength between parallel plates. This is a very handy way to find field strength, ε , since we can easily measure distance between 2 plates and the voltage applied.

The field strength (ε) between 2 parallel plates is called a 'gradient', which means it's a change in one value (ΔV) relative to a change in position (Δd). If ε is constant between the plates, then mathematically as the charged particle moves across and lessens Δd , then the voltage , ΔV , must also lessen.

Assuming A and C are at the plates, A-C has the greatest potential difference (ΔV) and B-C has ½ the potential difference.

- Calculate the electric field intensity between 2 parallel plates, 4.2 cm apart, which have a potential difference across them of 60.0 V. [1.4 x 10³ N/C]
- 2. The potential difference between 2 points 8.0 mm apart in the field between 2 parallel plates is 24 V.
 - a) What is the electric field intensity between the plates? [3.0 x 10³ N/C]
 - b) The plates themselves are 2.0 cm apart. What is the electric potential difference between them. **[60 V]**
- 3. When an 80.0 V battery is connected across a pair of parallel plates, the electric field intensity between the plates is 360 N/C.
 - a) What is the distance of separation of the plates? [0.222 m]
 - b) What force will be experienced by a charge of -4. 0 μ C placed at the midpoint between the plates? [1.44 x 10⁻³ N toward positive plate]
 - c) Calculate the force experienced by the charge in part (b) if it is located one quarter of the way from the positive plate. [1.44 x 10⁻³ N toward positive plate]
- 4. What electric potential difference must be applied across two parallel metal plates 8.0 cm apart so that the electric field intensity between them will be 3.2×10^2 N/C? [26 V]
- 5. The potential gradient between 2 parallel plates 2.0 cm apart is $2.0 \times 10^3 \text{ V/m}$.
 - a) What is the potential difference between the 2 plates? [40 V]
 - b) What is the electric field intensity between the plates? $[2.0 \times 10^3 \text{ N/C}]$

<u>Millikan's Math</u>

An oil drop would be suspended in Millikan's apparatus when Fg [down] = Fe [up].

Fg [down] = Fe [up] mg = qt $\cdot \epsilon$ mg = qt $\cdot \Delta V / \Delta d$

So...to solve for the charge on a tiny oil droplet, Millikan used this final version of the formula: $qt = mg\Delta d/\Delta V$

You try!

- 1. Two large horizontal parallel plates are separated by 2.00 cm. An oil drop, mass 4.02 x 10⁻¹⁵ kg, is held balanced between the plates when a potential difference of 820.0 V is applied across the plates, with the upper plate being positive.
 - a) What is the charge on the drop?
 - b) What is the number of electrons in excess or deficit?
- 2. A small latex sphere experiences an electric force of 3.6 x 10⁻¹⁴ N when suspended halfway between a pair of large metal plates, which are separated by 48.0 mm. There is just enough electric force to balance the force of gravity of the sphere.
 - a) What is the mass on the sphere?
 - b) What is the potential difference between the plates, given that the charge on the sphere is 4.8×10^{-19} C?