Inertia – Newton's 1st Law

<u>Inertia</u> = property of an object that resists change in motion. (object likes to keep doing what's it's already doing)

Galileo's Thought Experiment – in text

*you should be familiar with his famous thought experiment in which he concluded that in a frictionless environment, a ball will roll forever. It does NOT require an applied force as previously thought (Aristotle) *

Sketch below:

<u>Newton</u> \rightarrow used Galileo's idea and applied to moving and non-moving objects.

<u>Newton's 1st Law</u> – an object in motion will stay in motion and an object at rest will stay at rest UNLESS acted upon by an <u>unbalanced force</u>.

Fnet = 0

Fnet = sum of all forces – if Fnet = 0, you have balanced forces.

That block could be at rest and staying at rest....or...

Moving \rightarrow and still moving \rightarrow at constant speed.

Unbalanced Forces

If, in the above example, Fa ≠ Ff then you have unbalanced forces. Fnet ≠ 0. In this case, the object will accelerate.

Unbalanced forces cause the following:

- 1. Object starts moving
- 2. Object stops moving
- 3. Object speeds up
- 4. Object slows down
- 5. Object changes direction
- 6. Object is deformed (think car crash!)

The first 5 are clearly <u>examples of acceleration</u>. Either the speed is changing or the direction is changing. Since acceleration is a vector, if I change speed or direction, I am accelerating and acceleration requires an unbalanced force.

X/Y planes

Remember to analyze the 'x' plane and 'y' plane of motion separately. Typically, this means analyzing the vertical motion (and forces) separately from the horizontal motion (and forces).