Newton's $2^{\text {nd }}$ Law

Newton discovered that:
acceleration varies directly with forceand...
acceleration varies inversely with mass.

Thus... $a \propto F$ and $a \propto 1 / m$
In a formula: $\quad a=F / m$
because you must consider all forces, and there may be several forces:

$$
\text { Fnet }=m a
$$

Practise EASY: USING Fnet = ma with Fnet provided

$$
a=2.7 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}] \quad \text { Fnet }=4.2 \times 103 \mathrm{~N}[\mathrm{E}] \quad \mathrm{m}=?
$$

Fnet $=m a$

$$
\begin{aligned}
4.2 \times 10^{3} \mathrm{~N} & =m\left(2.7 \mathrm{~m} / \mathrm{s}^{2}\right) \\
m=1.6 & \times 10^{3} \mathrm{~kg} \text { (rounded to } 2 \text { sig. digs) }
\end{aligned}
$$

MEDIUM: USING Fnet = ma with Fnet not provided

$$
m=2.5 \mathrm{~kg} \quad a=3.0 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \text { Fnet }=\mathrm{ma} \quad \text { F Fnet }=\text { sum of all forces! } \\
& \text { Fapp }+ \text { Fk }=\mathrm{ma} \\
& 8.0+\mathrm{Fk}=(2.5 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{Fk}=7.5-8.0=-0.5 \mathrm{~N}[\mathrm{~s}]
\end{aligned}
$$

The friction is $0.5 \mathrm{~N}[\mathrm{~N}]$

HARD: USING Fnet = ma with coefficient of friction

