## Orbitting problems

1. The space shuttle ejects a 1200 kg booster tank so that the tank is momentarily at rest at an altitude of 2000 km (above Earth's surface). Neglecting atmospheric effects, determine:
a) How much work is done on the booster by the force of gravity in returning it to the Earth's surface. Hint: W-E theorem. [1.8 $\left.\times 10^{10} \mathrm{~J}\right]$
b) the velocity with which is strikes the surface of the Earth $\left[5.4 \times 10^{3} \mathrm{~m} / \mathrm{s}\right]$
2. A 500 kg satellite is in circular orbit 200 km above the Earth's surface. Calculate :
a) the gravitational potential energy of the satellite $\left[-3.03 \times 10^{10} \mathrm{~J}\right]$
b) the kinetic energy of the satellite $\left[1.52 \times 10^{10} \mathrm{~J}\right]$
c) the escape velocity (from earth's surface) $[11,000 \mathrm{~m} / \mathrm{s}]$
3. The moon.
a) With what velocity must an object be projected from the moon's surface in order to rise to an altitude equal to twice the moon's radius? [ $1.7 \times 10^{3} \mathrm{~m} / \mathrm{s}$ ]
b) What is the escape velocity required from the moon's surface? [ $2.4 \times 10^{3} \mathrm{~m} / \mathrm{s}$ ]
4. A rocketship, of mass $1.00 \times 10^{4} \mathrm{~kg}$ is located $1.00 \times 10^{10} \mathrm{~m}$ from the centre of the Earth?
a) Determine its gravitational potential energy at this point [-3.99 $\left.\times 10^{8} \mathrm{~J}\right]$
b) How much kinetic energy must it have, at this point, to be capable of escaping from the Earth's gravitational field? [ $\geq 3.99 \times 10^{8} \mathrm{~J}$ ]
c) What is its escape velocity from Earth, at this point? [ $2.82 \times 10^{2} \mathrm{~m} / \mathrm{s}$ ]
