PE Effect: Light is a wave - right?

Accepted Wave theory: Increasing the amplitude of a wave increases its energy.

<u>Wave</u>		result of increase a	mplitude				
	Sound	= louder & more energy					
	Water wave	= higher & more energy					
	Light	= brighter & more energy	(*transparent/translucent filters)				
<u>Experiments</u>							
Sketch the set up with appropriate details. (previously done) Record what happens.							
(1) <u>PE Effect</u> :							
50% intensity - Physicists couldn't see electrons. So what did they observe?? Blue light Red light							
Explain the difference.							
(2) <u>Focus on Red Light</u>							
According to current wave theory, what could be done?							
Predict:							
Observe:							
Explain:							
(3) <u>What's next logically</u> ? – keep @ 50%							
Predict:							
Observe:							
Explain:							

(4) Now let's increase the amplitude

We know that energy is conserved. This law always holds true. Using this:

Observe:	
0030170.	
Explain: _	
(E) Now lot	's find out how much Ek the electron has. My negatively charging the receiving plate, th
electron	$\frac{1}{2}$ will be repelled from it. If the electron has enough Ek, it will arrive and if the ΔV is too won't arrive there
Let's sta	art with OV and current and increase the ΔV until the current <u>just</u> stops. Now the Ee (Ee equal to the initial Ek of electron. Use 50% intensity.
Predict: –	
Observe:	
Explain _	
Now le	t's increase the intensity. Use classic λ theory to predict results
Predict: —	
Observe:	
Explain _	
\sim	
830	Einstein says:

Energy conservation says:

app

Now let's change the metal cathode

Predict: -		
Observe:		
Explain:	 	
W _o =		
Formula:		