Power

As mentioned, machines (simple or complex) help us do work. I can lift 100 bricks up 2 metres, but it would take a long time. A truck with a shovel can lift all 100 bricks at once. Although we do the same work (Work done = Change in Eg), the truck does it much faster - it has more power!

Power $(P)=$ rate of work. 'Rate' suggests there is a 'time' component here which there is:

$$
P=\frac{W \text { done }}{\text { time }} \quad \ldots \text { or... } \quad P=\frac{E \text { consumed } / \text { used }}{\text { time }}
$$

Simply stated

$$
P=W / \dagger \quad \text { or } P=E / \dagger
$$

Unit - Following the logic of the formula, power is measured, therefore, in J / s
To honour James Watt, a Scottish inventor, who dramatically improved the steam engine in the late 1700's, the joule/second was renamed the 'watt' $1 \mathrm{~J} / \mathrm{s}=1 \mathrm{watt}=1 \mathrm{~W}$

You can learn more about James Watt at this link http://inventors.about.com/od/wstartinventors/a/james_watt.htm

Horsepower - A horse working steadily is believed to exert about 750 joules/second or 750 watts of power.

1 hp (1 horsepower) $=750 \mathrm{~W}$

