Average Speed vs. Average Velocity

We've learned the difference between speed (scalar) and velocity (vector).

$$
\text { Speed: } v=\Delta d / t \quad \text { whereas } \quad \text { Velocity: } \vec{v}=\overrightarrow{\Delta d} / t
$$

Try: A student walks 100 m [S] and then 400 m [W] in 4.5 min to get to school. What is her average speed and velocity?

G: draw this out. It is non-collinear.

R: speed and velocity for whole trip
$A: v=\Delta d / t \quad$ whereas \quad Velocity: $\quad \rightharpoonup \rightharpoonup \Delta d / t$
S: $\Delta \mathrm{d}=100 \mathrm{~m}+400 \mathrm{~m}=\underline{500 \mathrm{~m}} \quad{ }^{*}$ no direction required.
$\stackrel{\rightharpoonup}{\Delta d}$
$\Delta \mathrm{d}=$ solve by Pythagorean (for magnitude) and trig for angle (Θ)

$$
\overrightarrow{\Delta \mathrm{d}^{2}}=100^{2}+400^{2} \quad \overrightarrow{\Delta \mathrm{~d}}=412 \mathrm{~m}
$$

$$
\operatorname{Tan} \Theta=400 / 100 \quad \underline{\theta=76^{\circ}} \quad \text { direction is }\left[\mathrm{S} 76^{\circ} \mathrm{W}\right]
$$

I want time in seconds. So $4.5 \mathrm{~min}=4.5 \times 60=270$ seconds.
S: \quad Average speed $=\mathbf{5 0 0} / \mathbf{2 7 0}=\mathbf{1 . 9} \mathbf{~ m} / \mathrm{s}$

$$
\text { Average velocity }=412 / 270=1.5 \mathrm{~m} / \mathrm{s}\left[\mathrm{~S} 76^{\circ} \mathrm{W}\right]
$$

Homework Questions:

1. Why is average velocity typically less than average speed?
2. Is average velocity ever equal to average speed? Explain using an example if able to.
