Calculating Your Spring Constant (k)

A) Using your very own spring and a Newton spring scale and anything else you might need, you are to determine the spring constant.
B) You also need to be an initial calculation.

	Criteria	
 Understanding (5) A1.6: Compile accurate data....and record	A) Calculating spring constant (k) Data (3+ data points) collected in properly labelled chart Data points graphed \& line of best fit drawn according to expectations. GRASP used Proper units used Reasonable answer interpret qualitative data.	
Inquiry (3) C2.2: analyze...work/energy... and conservation of energy and solve related problems	Full marks for determining how far to pull back your spring for it to be launched off a black bench and land 1.5m horizontally on the floor.	$/ 1$

Creating a table: \quad (See page 752 for example - you need not do colour).
The following is expected:

- Columns are labelled on top. Units are included in brackets. ie: (m)

Units are NOT included in the body of the table.

- Tables are created with straight lines. ie: ruler

Creating a graph: (Fig. 5.18 on page 250 isn't bad - just mixing boxed title)
The following is expected:

- $\quad X$ and Y axes are labelled and labelled parallel to axes. ie: labelling on y axis is written vertically.
- Ruler is used
- Pencil is used.
- It is very neat.
- A boxed title is included and is located within the x and y axes. It is not 'floating' on top of the axes where readers quite often miss it.
- The title makes reference to what you measure on x and y axes.
- If slope is calculated, show the rise/run on graph - I should be able to see your math method.

