Waves @ Boundaries & Standing Waves

Waves change speeds in different media. Waves can <u>reflect</u> back from a media boundary (the line/boundary where mediums change)

<u>Free-end reflection</u> (remember the wave machine in class?)

A **crest** sent to boundary returns as **crest**.

(and a trough reflected back will return as trough)

Fixed-end reflection

A crest sent to boundary returns as trough.

(and a trough reflected back will return as crest)

Standing waves – a special case of reflection. Copy definition from text

**hand out from Mrs. Hudecki re: how standing waves are formed **

Standing Wave Patterns

Use your text to fill in this chart.

Symbol	# nodes between ends	Diagram (draw)	Harmonic (n)	overtone
f ₀				
f ₁				
f ₂				
f ₃				

^{**}Make sure you label 'node' and length (L) in terms of wavelength (λ) and harmonic (n). There is a lot to label in the diagram; make sure to include it all!

Fundamental frequency or first harmonic (f_0) = the lowest frequency that can produce a standing wave in a given medium

Harmonics = whole-number multiples of fundamental frequency

Overtone = a sound resulting from a string that vibrates with more than one frequency