Waves @ Boundaries & Standing Waves Waves change speeds in different media. Waves can <u>reflect</u> back from a media boundary (the line/boundary where mediums change) <u>Free-end reflection</u> (remember the wave machine in class?) A **crest** sent to boundary returns as **crest**. (and a trough reflected back will return as trough) ## Fixed-end reflection A crest sent to boundary returns as trough. (and a trough reflected back will return as crest) **Standing waves** – a special case of reflection. Copy definition from text **hand out from Mrs. Hudecki re: how standing waves are formed ** ## **Standing Wave Patterns** Use your text to fill in this chart. | Symbol | # nodes
between
ends | Diagram (draw) | Harmonic
(n) | overtone | |----------------|----------------------------|----------------|-----------------|----------| | f ₀ | | | | | | f ₁ | | | | | | f ₂ | | | | | | f ₃ | | | | | ^{**}Make sure you label 'node' and length (L) in terms of wavelength (λ) and harmonic (n). There is a lot to label in the diagram; make sure to include it all! Fundamental frequency or first harmonic (f_0) = the lowest frequency that can produce a standing wave in a given medium **Harmonics** = whole-number multiples of fundamental frequency **Overtone** = a sound resulting from a string that vibrates with more than one frequency