Temperature of Air in our Classroom Lab

Purpose:

To determine the ambient (air) temperature of our classroom.

Hypothesis:

Materials & Method:

Set up as shown in labeled diagram below. Generally Follow page # 439 of text

Observations:

Design an observation chart Complete the observation chart. Include sample calculations beneath chart. Note: The textbook talks of 'resonance'. When you have 'resonance', you have the standing wave. As discussed in class, a standing wave has 2x the original amplitude, so the sound wave will be loudest when you have a standing sound wave set up!

Analysis:

Answer b) and c) (Knowledge & Understanding mark)

Answer d) e) and f) together with Conclusion (Application mark)

Conclusion:

Respond (provide an answer) to the purpose.

Criteria	Level 1	Level 2	Level 3	Level 4
K&U (b&c)	- attempts to draw	- able to draw &	- able to draw &	- able to draw &
E 2.7 - analyze &	& explain resonant	explain resonant	explain resonant	explain resonand
explain conditions	(standing) air	(standing) air	(standing) air	(standing) air
for standing waves	column waves	column waves	column waves	column waves
	Errors or	with some errors.	with a few errors.	with no error or <u>1</u>
	omissions present			<u>very</u> <u>minor</u> one.
Application (d &	- attempts to	- able to	- able to	- able to
conclusion)	determine the	determine the	determine the	determine the
E 2.3 – conduct	speed of sound &			
inquiries re: λ, v &	temperature of	temperature of air	temperature of air	temperature of air
freq.	air. Significant	with some errors	without any	without any
	errors / omissions	errors.	errors.	errors.
Application (e,f)	- identifies 1	- can identify 1	- can identify 2	- can identify 3+
A1.8, A1.9	reasonable source	reasonable source	reasonable	reasonable
Identify sources of	of error without	of error and	sources of error	sources of error
error & suggest	suitable	suggest suitable	and suggest	and suggest
improvement	improvement (or	improvement.	suitable	suitable
	vice versa)		improvements for	improvements for
			each.	each.

Note: human error (your mistakes) are not valid 'sources of error'. Ie: measuring or calculating incorrectly is human error, not a source of error. A valid source of error is something that is happening in the experimental design or equipment that you believe is reasonably influencing your calculations and/or conclusion.