Drawing \& Adding Vectors

Motion - involves a change in the position of an object over time.
Motion can be described in scalar or vector terms. 'Scalar' means there is no reference to direction (distance, speed \& acceleration). 'Vector' means one takes note of direction (displacement, velocity \& acceleration). Physicists prefer vectors. In symbol form, how do you know a variable is a vector?

Working with NESW reference coordinates

Quite often we use north/south/east/west reference coordinates but the object is moving or is positioned obliquely (ie: NOT due north,south,east or west). So we might say the position is 25 km [E $\left.35^{\circ} \mathrm{S}\right]$. To translate this, start pointing east, then drop 35° towards south. This is the direction! There are other ways to describe direction, but I prefer this way since you follow the directions in order!

Drawing \& Adding Vectors

Vectors are represented by a line with an arrowhead at the end in the direction of travel. The tail is the origin (start) and the tip is the end or arrowhead.

Use a scale of $1 \mathrm{~cm}=100 \mathrm{~m}$ and draw the following accurately. ${ }^{*}$ is the reference point.

Adding Collinear vectors - these are vectors that are drawn in 1 plane. In other words, in 1 dimension (1D) or in a straight line. (north and south vectors, up and down vectors). Simply draw (add) them tail-to-tip style. The resultant vector (the sum, the answer) is draw from the tail of the first vector to the tip of final vector. It is dotted -.---.-.-.-. \rightarrow
ie: 2 cm [right] +3 cm [right] +6 cm [left] would look like this:

4.-.......- $=$ the resultant. You could measure, but logic tells you it's 1 cm [left].

You can also use scale drawings (OK) or math (preferable). Math results would use integers in 1 dimension. ie: set [right] = +ve. Therefore, you would have:
$(+2 \mathrm{~cm})+(+3 \mathrm{~cm})+(-6 \mathrm{~cm})=-1 \mathrm{~cm}[\mathrm{right}]$.

* you always set the final [direction] as the one you set +ve. You can reverse the direction.

So... -1 cm [right] $=+1 \mathrm{~cm}$ [left] Notice: I switch the sign AND the direction!

Adding Non-Collinear vectors - these are vectors that are drawn in 2 planes. In other words, in 2 dimensions (2D) or not in a straight line. (north and east vectors, up and left vectors). Simply draw (add) them tail-to-tip style. The resultant vector (the sum, the answer) is draw from the tail of the first vector to the tip of final vector. (tail-to-tip) It is dotted. $-\cdot-\cdot-\cdot-\cdot-\rightarrow$

Try this one: I start at reference point A and travel $300 \mathrm{~m}[\mathrm{~W}]$, then $100 \mathrm{~m}[\mathrm{~N}]$ and then $300 \mathrm{~m}[\mathrm{~N}]$ at which point I stop. This is point B. Label these points.
What is the distance travelled? $\Delta \mathrm{d}=$ \qquad _.
How do I calculate the displacement? $\stackrel{\rightharpoonup \mathrm{d}=}{ }$ \qquad

Remember it is the straight line change in position. You will need to do a tip-to-tail scale drawing. Hint: look at Fig. 1.8 on page 10 of your text. Tail-to-tip connect ' A ' to ' B '. Try!

$$
1 \mathrm{~cm}=50 \mathrm{~m}
$$

*start

Remember: include scale and reference coordinates! Accuracy counts!
Mathematic solutions are preferred. Do you know how to do this? Ask for help if uncertain!

