Vector Addition - Part 2

1) Collinear Vectors - are vectors that are in a straight line. (1D) ie: I walk 5 m [E$]$ and then $20 \mathrm{~m}[\mathrm{~W}]$.

Draw: tail-to-tip The resultant vector starts at the start and ends at the end. Draw: the resultant arrow as a dashed arrow.

Mathematically: Set [E] as +ve. So all directions are east. (west is a negative)

$$
\text { So... } \quad(+5)+(-20)=-15 m[E]
$$

2) Non-collinear - are vectors that are not ina straight line (2D)

Easy non-collinear
ie: what is my final position if I travel $9 \mathrm{~km}[\mathrm{~S}]$ and then turn and travel 12 km [W]?
Draw: Tail-to-tip. Include resultant.

Mathematically: cannot add with integers. Must add with geometry/trig.
Length of Δd_{R} : Use Pythagorean $a^{2}+b^{2}=c^{2}$
Angle (θ): Use trig ratios. $\operatorname{Tan} \theta=12 / 9 \quad \Theta=53^{\circ}$
When the math is done, $\Delta d_{R}=13 \mathrm{~km}\left[S 53^{\circ} \mathrm{W}\right]$

What if I have more than 2 vectors?

ie: my dog loves to run after squirrels. If he runs 5 m [W], then 2 m [S], then $15 \mathrm{~m}[\mathrm{~N}]$ and $2 \mathrm{~m}[\mathrm{~W}]$, what is his displacement from his starting point?

Draw it first to see a general answer. Try this in the space below.

Mathematically: Set North and East as +ve
Add the N/S vectors (' y ' vectors) together for a total
ie: $(-2)+(+15)=+13 \mathrm{~m}[\mathrm{~N}]$
Add the E / W vectors (' x ' vectors) together for a total ie: $(-5)+(-2)=-7 m[E]$

Put these 2 vectors together to form a triangle. Now you have the situation above - solve with Pythagorean and trig.

