Vectors in 2 dimensions [2.1]

Vector addition \rightarrow add 'tail-to-tip'. The resultant 'starts at the start and ends at the end'. Dashed line = resultant ie:

In grade 12, you are expected to solve this mathematically, not with scale drawings. You will see 3 types.

A: Collinear - lines in 1D - establish the +ve direction and add. ie: $5 \mathrm{~m}[\mathrm{~N}]+2 \mathrm{~m}[\mathrm{~S}]=+5+(-2)=+3 \mathrm{~m}[\mathrm{~N}]$

B: Non-collinear - easy - lines in 2D - but perpendicular ie: Go $3 \mathrm{~m}[\mathrm{~N}]$ and then $4 \mathrm{~m}[\mathrm{E}]$. What is $\overrightarrow{\Delta d}$?
\longrightarrow Use Pythagorean \& trigonometry.
θ, For the length of resultant, use Pythagorean Look for $3,4,5$ pattern. So $\Delta d=5 \mathrm{~m}$

For the direction, use trigonometry. $\operatorname{Tan}^{-1} \theta=4 / 3=53^{\circ}$ So... $\overrightarrow{\Delta d}=5 \mathrm{~m}\left[\mathrm{~N} 53^{\circ} \mathrm{E}\right]$

C: Non-collinear - hard - lines not perpendicular. Solve these with vector components - tedious but always works! Works with 2+ vectors too.
ie: Sailboat goes 20 km [$\mathrm{E} 25^{\circ} \mathrm{N}$] and then tacks to [$\mathrm{N} 40^{\circ} \mathrm{W}$] and continues along this line for 45 km . What is final displacement?

Basically, these are the steps: *key is organization!*

1) Draw a relatively accurate sketch, including the resultant.
2) Lightly draw in the NSEW coordinates.
3) Break each vector in x and y components. (usually north \& east $=+$ ve directions)
4) Solve resultant x component $\left(r_{x}\right)$ and solve resultant y component $\left(r_{y}\right)$.
5) Add r_{x} and r_{y} - it will make a triangle.
6) solve using method \#2 above!
** Full solution will be worked up on the board during class. If you miss, please see a classmate's notes. It's too difficult to 'draw' for computer.

Subtracting Vectors - pg. 68 - Simply add the opposite!
Acceleration - Interestingly, example 3 - pg. 68 - if your speed remains constant, but your direction changes, you have accelerated! You can use this method to determine the acceleration! ($a=v 2-v 1 / t$). You will need to 'add the opposite' with vectors, determine Δv and then divide by time.

